
Method-Level Bug Prediction

Emanuel Giger
University of Zurich
giger@ifi.uzh.ch

Marco D’Ambros
University of Lugano

marco.dambros@usi.ch

Martin Pinzger
Delft University of Technology

m.pinzger@tudelft.nl

Harald C. Gall
University of Zurich
gall@ifi.uzh.ch

ABSTRACT
Researchers proposed a wide range of approaches to build
effective bug prediction models that take into account mul-
tiple aspects of the software development process. Such
models achieved good prediction performance, guiding de-
velopers towards those parts of their system where a large
share of bugs can be expected. However, most of those ap-
proaches predict bugs on file-level. This often leaves de-
velopers with a considerable amount of effort to examine
all methods of a file until a bug is located. This particular
problem is reinforced by the fact that large files are typically
predicted as the most bug-prone. In this paper, we present
bug prediction models at the level of individual methods
rather than at file-level. This increases the granularity of
the prediction and thus reduces manual inspection efforts
for developers. The models are based on change metrics and
source code metrics that are typically used in bug prediction.
Our experiments—performed on 21 Java open-source (sub-
)systems—show that our prediction models reach a precision
and recall of 84% and 88%, respectively. Furthermore, the
results indicate that change metrics significantly outperform
source code metrics.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, process metrics, product metrics

Keywords
method-level bug prediction, fine-grained source code changes,
code metrics

1. INTRODUCTION
In the last decade, researchers have proposed a wide range

of bug prediction models based on diverse information, such
as source code metrics [3, 27, 48, 47, 32, 46], historical data
(e.g., number of changes, code churn, previous defects) [19,
34, 31, 23, 17, 16], and developers interaction information

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEM’12, September 19–20, 2012, Lund, Sweden.
Copyright 2012 ACM 978-1-4503-1056-7/12/09 ...$10.00.

(e.g., contribution structure) [37, 40, 25]. Since most predic-
tion models were evaluated on different systems—and fre-
quently with different performance measures—researchers
have also investigated which approaches provide the best
and most stable performance across different systems [24,
30, 41, 9].

While having achieved remarkably good prediction perfor-
mance, most of these approaches predict bugs at the level of
source files (or binaries, modules, Java packages). However,
since a file can be arbitrarily large, a developer needs to in-
vest a significant amount of time to examine all methods of a
file in order to locate a particular bug. Moreover, considering
that larger files are known to be among the most bug-prone
[3, 18, 36], the effort required for code inspection and review
is even larger. In addition, Posnett et al. recently showed
that there is a risk of inferential fallacy when transferring
empirical findings from an aggregated level, e.g., prediction
models at the package- or file-level, to an dis-aggregated,
smaller level, for instance, method-level—in particular when
such models are used for inspection [38].

In our dataset, a class has on average 11 methods out of
which 4 (˜32%) are bug-prone, i.e., are affected by at least
one bug. Assuming that there is only knowledge that a file
is bug-prone, but not which particular method contains the
bug—as given by a file-level prediction model—a developer
needs to inspect all methods one by one until the bug is lo-
cated. Given the median precision of 0.84 achieved by one of
our method-level based prediction models (see Table 4), a de-
veloper has roughly the same chance of picking a bug-prone
method by randomly guessing after ”eliminating” 6 out of
those 11 methods (4/5 = 0.8). In other words, one needs to
manually reduce the set of possible candidates by more than
half of all methods until chance is as good as our prediction
models in terms of retrieving a bug-prone method. There-
fore, we argue that being able to narrow down the location of
bugs to method-level can save manual inspection steps and
significantly improve testing effort allocation. This is espe-
cially important if the resources for quality assurance are
limited. In this paper, we investigate the following research
questions:

RQ1 What is the performance of bug prediction models on
method-level using change and source code metrics?

RQ2 Which set of predictors, among change metrics, source
code metrics, and their combination, provides the best
prediction performance at method-level?

RQ3 How does the prediction performance vary if the num-
ber of bug-prone methods (i.e., positively labeled sam-
ples) decreases?

We investigate our research questions based on the source
code and change history of 21 Java open-source (sub-)systems.
The results of our study show that we can build prediction
models to identify bug-prone methods with precision, recall,
and AUC (area under the receiver operating characteristic
curve) of 0.84, 0.88, and 0.95, respectively. Moreover, our
experiments indicate that change metrics significantly out-
perform source code metrics for method-level bug prediction.
In contrast to previous work [23] which has also addressed

bug prediction on entity-level, the goal of our models is to
predict bug-prone methods in advance rather than suggest-
ing further bug-prone source code entities that need to be
changed in addition to that particular entity in which the
bug is fixed. Furthermore, we use different methods and
metrics to train the prediction models.
The remainder of the paper is organized as follows: Sec-

tion 2 describes our dataset as well as the set of metrics and
the tools to compute them. Section 3 presents our predic-
tion models and reports on the results of the experiments.
We discuss the potential benefits and applications of our ap-
proach in Section 4. We present work related to this paper
in Section 6 and conclude with possible future work in Sec-
tion 7.

2. DATA COLLECTION
To conduct our prediction experiments we collected a data-

set consisting of code, change, and bug metrics for 21 soft-
ware (sub-)systems (see Table 1). Building models to pre-
dict bugs at method- rather than at file-level requires that
all metrics are available at the method level. In this section,
we present the tools and methods necessary to assemble our
dataset.

2.1 Dataset
We conducted our study with the source code and change

history of the projects listed in Table 1: #Classes denotes
the number of Java classes when checking out the source
code at the end of the timeframe (Time) from the trunk of
the specified repository path; #Methods denotes the number
of methods (including Constructors), and #stmt refers to
the number of source code statements. #MH is the number
of methodHistories (see Table 3) and #Bugs denotes the
number of bugs within the considered timeframe (Time). It
is possible that #MH<#Methods since there is a substantial
amount of methods that are never changed, e.g., accessor-
methods or default constructors.

2.2 Code Metrics
Code metrics (i.e., product metrics) are directly computed

on the source code itself. In the context of bug prediction the
underlying rationale of these metrics is that larger and more
complex pieces of code are more bug-prone because they are
more difficult to understand and to change [9]. In the liter-
ature, two traditional suites of code metrics exist: (1) The
CK metrics suite and (2) a set of metrics that are directly
calculated at the method level that we named SCM. The CK
suite, introduced by Chidamber and Kemerer [8], consists of
six metrics that measure the size and complexity of various
aspects of object-oriented source code and are calculated at
the class level. It was successfully applied for bug prediction
in prior work, e.g., [3, 44]. This suite can be extended by
additional object-oriented metrics, such as number of fields
per class (e.g., [48]). The SCM set of metrics is not lim-

Table 2: List of source code metrics used for the
SCM set
Metric Name Description (applies to method level)

fanIN Number of methods that reference a given method

fanOUT Number of methods referenced by a given method

localVar Number of local variables in the body of a method

parameters Number of parameters in the declaration

commentTo
CodeRatio

Ratio of comments to source code (line based)

countPath Number of possible paths in the body of a method

complexity McCabe Cyclomatic complexity of a method

execStmt Number of executable source code statements

maxNesting Maximum nested depth of all control structures

ited to object-oriented source code, and includes measures
such as lines of code (LOC) or complexity. When applied to
files, these metrics are typically averaged, summed up over
all methods that belong to a particular file, or the highest
value in the file is selected [48, 47, 35, 26].

Since our goal is to build bug prediction models at the
method level, we do not use the CK suite as it contains
metrics which are not directly applicable to methods, e.g.,
number of sub-classes. We choose instead the metrics listed
in Table 2, whose good performance were shown in previous
studies [30, 47, 20].

To compute the code metrics, we first obtained, for each
project, the source code version at the end of the timeframe
specified in Table 1. Then, using the Evolizer framework
[14], we built a model of the source code that we use to
compute fanIN, fanOUT, localVar, and parameters. Finally,
using Understand

1, we calculate the remaining code met-
rics for each method, i.e., commentToCodeRatio, countPath,
complexity, execStmt, and maxNesting.

Instead of lines of code (LOC) we use the number of declar-
ative (localVar) and executable (execStmt) source code state-
ments per method. We opted for this choice because LOC
measures a textual aspect of source files, which is not suit-
able when changes at the method level are calculated based
on the structure of the abstract syntax tree (see Section 2.3).
However, our data shows that the number of source code
statements (= localV ar + execStmt) approximately corre-
sponds to the LOC per method. In other words, there is
roughly one source code statement per line of code.

2.3 Change Metrics
Version control systems (VCS), such as CVS, SVN, or

GIT, contain data regarding the (source code) change his-
tory of a software project. VCSs store a log entry for each
change providing detailed information about that particu-
lar change: The file(s) being affected by the change, a (re-
vision) number to uniquely identify each change in correct
temporal order, the name of the developer responsible for the
change, a timestamp, and a manually entered commit mes-
sage. Within current VCSs a file typically constitutes the
atomic change unit, and hence, changes are solely recorded
at the file level. Furthermore, source code files are handled
as text files, ignoring their underlying syntactic and seman-
tic structure.

However, to build prediction models at the method level,
it is necessary to track changes at a finer granularity. For this
purpose, change measures widely adopted for bug prediction

1
http://www.scitools.com/

Table 1: Overview of the projects used in this study
Project Version Control System Path #Classes #Methods #MH #stmt #Bugs Time[M, Y]

Compare dev.eclipse.org:/cvsroot/eclipse:org.eclipse.compare 154 1720 2500 12776 563 May01-Sep10

jFace dev.eclipse.org:/cvsroot/eclipse:org.eclipse.jface 374 4438 4043 23991 1275 Sep02-Sep10

JDT Debug dev.eclipse.org:/cvsroot/eclipse:org.eclipse.jdt.debug 436 4434 4700 23517 900 May01-July10

Resource dev.eclipse.org:/cvsroot/eclipse:org.eclipse.core.resources 270 3186 6167 20837 948 May01-Sep10

Team Core dev.eclipse.org:/cvsroot/eclipse:org.eclipse.team.core 157 1510 1124 7833 288 Nov01-Aug10

Team CVS dev.eclipse.org:/cvsroot/eclipse:org.eclipse.team.cvs.core 184 1830 2551 11826 769 Nov01-Aug10

Debug Core dev.eclipse.org:/cvsroot/eclipse:org.eclipse.debug.core 173 1373 2218 6463 493 May01-Sep10

jFace Text dev.eclipse.org:/cvsroot/eclipse:org.eclipse.jface 322 3029 3724 18821 777 Sep02-Oct10

Update Core dev.eclipse.org:/cvsroot/eclipse:org.eclipse.update.core 262 2151 4185 14873 402 Oct01-Junt10

Debug UI dev.eclipse.org:/cvsroot/eclipse:org.eclipse.debug.ui 770 6525 8065 43760 2761 May01-Oct10

JDT Debug UI dev.eclipse.org:/cvsroot/eclipse:org.eclipse.jdt.debug.ui 390 2586 4231 20289 1822 Nov01-Sep10

Help dev.eclipse.org:/cvsroot/eclipse:org.eclipse.help 112 562 536 3503 198 May01-May10

JDT Core dev.eclipse.org:/cvsroot/eclipse:org.eclipse.jdt.core 1140 17703 43134 172939 4888 Jun01-Sep10

OSGI dev.eclipse.org:/cvsroot/eclipse:org.eclipse.osgi 364 4106 5282 27744 1168 Nov03-Oct10

Azureus 3 azureus.cvs.sourceforge.net:/cvsroot/azureus:azureus3 362 3983 5394 40440 518 Dec06-Apr10

Openxava openxava.cvs.sourceforge.net:/cvsroot/openxava:OpenXava 507 5132 4656 27662 331 Feb05-Apr11

Jena2 jena.cvs.sourceforge.net:/cvsroot/jena:Jena2 897 8340 7764 33542 704 Dec02-Apr11

Lucene https://svn.apache.org/repos/asf/lucene/dev/trunk/lucene/src/java 477 3870 1754 23788 377 Mar10-May11

Xerces http://svn.apache.org/repos/asf/xerces/java/trunk/src 693 8189 6866 56920 1017 Nov99-Apr11

Derby Engine https://svn.apache.org/repos/asf/db/derby/code/trunk/java/engine 1394 18693 9507 116449 1663 Aug05-Apr11

Ant Core http://svn.apache.org/repos/asf/ant/core/trunk 827 8698 17993 51738 1900 Jan00-Apr11

[17, 31, 37, 30, 7], such as number of revisions and lines
added/deleted, are too coarse-grained and lack the semantic
of individual code changes.
Fluri et al. proposed a tree differencing algorithm to ex-

tract fine-grained source code changes down to the level of
single source code statements [12]. Their algorithm is based
on the idea of comparing two different versions of the ab-
stract syntax tree (AST) of the source code, and consists of
the following three sub-steps: First, they match all individ-
ual nodes between the two versions of the AST using string
and tree similarity measures. This matching is required to
determine if a particular node was inserted, deleted, updated,
or moved between two AST versions. In a second step, the
algorithm generates a minimal set of these four basic tree
edit operations, transforming one version of the AST into
the other. Third, each edit operation for a given node is
annotated with the semantic information of the source code
entity it represents and is classified as a specific change type
based on a taxonomy of code changes [14]. For instance, the
insertion of a node representing an else-part in the AST is
classified as else-part insert change type.
Combining the set of individual tree edit operations re-

sulting from the AST comparison with the semantic infor-
mation of each node allows us to track source code changes
at the fine-grained level of individual source code statements.
Moreover, we know not only which particular source entity
was changed, but also the exact location of every change
within the AST. For example, as illustrated in Figure 1 it is
possible to determine that (1) the condition expression obj

!= null in body of method foo() of Class A was updated
to obj != null && !obj.equals(this), and (2) the param-
eter int b was added to the declaration of method sum from
revision 1.2 to 1.3 of the corresponding file A.java. Further-
more, we are able to distinguish between changes that do
affect source code entities and ”textual” changes, such as
license header updates or formatting.
Currently, this tree-differencing algorithm is implemented

in ChangeDistiller to work with AST structures of Java
source code [14]. ChangeDistiller accesses the VCS of
a project and pairwise compares all subsequent revisions of
every source file. All fine-grained source code changes are
then stored in a database. Based on this, we extracted—at
the method level—the change metrics (CM) listed in Table 3.

obj != null

Class A

void foo() int sum(int a) ...

...

...

File A.java @
Rev 1.2

obj != null
&& !obj.equals

(this)

Class A

void foo()
int sum(int a,

int b)
...

...

...

File A.java @
Rev 1.3

condition expression update

parameter insert

/**Copyright
2010*/

/**Copyright
2011*/

API license header update

Figure 1: A schematic example of the fine-grained
code change extraction based on the AST compari-
son of two file revisions as proposed in [12].

We selected and defined these metrics to provide an anal-
ogy to file-level based approaches [30]. For instance, method-
Histories corresponds to the number of revisions of a file;
the smt- and churn-metrics in Table 3 can be seen as ana-
logue counterparts to the (textual) line based churn metrics.
Other metrics, such as cond, are specific to the AST based
change extraction.

2.4 Bug Data
Bug data of software projects is managed and stored in

bug tracking systems, such as Bugzilla. Unfortunately, many
bug tracking systems are not inherently linked to VCSs.
However, developers fixing a bug often manually enter a ref-
erence to that particular bug in the commit message of the
corresponding revision, e.g.,”fixed bug1234” or ”bug#345”.
Researchers developed pattern matching techniques to de-
tect those references accurately [43], and thus to link source
code files with bugs. We adapted the pattern matching ap-
proach to work at method-level: Whenever we find that a
method was changed between two revisions of a file (using
ChangeDistiller, see Section 2.3) and the commit mes-
sage contains a bug reference, we consider the method to
be affected by the bug. Based on this, we then count the
number of bugs per method over the given timeframes in
Table 1.

However, this linking technique requires that developers

Table 3: List of method level CM used in this study
Metric Name Description (applies to method level)

methodHistories Number of times a method was changed

authors Number of distinct authors that changed a
method

stmtAdded
Sum of all source code statements added to a
method body over all method histories

maxStmtAdded
Maximum number of source code statements
added to a method body for all method histories

avgStmtAdded
Average number of source code statements added
to a method body per method history

stmtDeleted
Sum of all source code statements deleted from
a method body over all method histories

maxStmtDeleted
Maximum number of source code statements
deleted from a method body for all method his-
tories

avgStmtDeleted
Average number of source code statements
deleted from a method body per method history

churn Sum of stmtAdded − stmtDeleted over all
method histories

maxChurn Maximum churn for all method histories

avgChurn Average churn per method history

decl Number of method declaration changes over all
method histories

cond
Number of condition expression changes in a
method body over all revisions

elseAdded Number of added else-parts in a method body
over all revisions

elseDeleted
Number of deleted else-parts from a method
body over all revisions

consistently enter and track bugs within the commit mes-
sages of the VCS. Furthermore, we rely on the fact that
developers commit regularly when carrying out corrective
maintenance, i.e., they only change those methods (between
two revisions) related to that particular bug report being ref-
erenced in the commit message. We discuss issues regarding
the data collection, in particular regarding the bug-linking
approach, that might threaten the validity of our findings in
Section 5.

3. PREDICTION EXPERIMENTS
We conducted a set of prediction experiments using the

dataset presented in Section 2 to investigate the feasibility
of building prediction models on method-level. We first de-
scribe the experimental setup and then report and discuss
the results.

3.1 Experimental Setup
Prior to model building and classification we labeled each

method in our dataset either as bug-prone or not bug-prone
as follows:

bugClass =

{

not bug − prone : #bugs = 0
bug − prone : #bugs >= 1

(1)

These two classes represent the binary target classes for
training and validating the prediction models. Using 0 (re-
spectively 1) as cut-point is a common approach applied in
many studies covering bug prediction models, e.g., [30, 48,
47, 4, 27, 37]. Other cut-points are applied in literature,
for instance, a statistical lower confidence bound [33] or the
median [16]. Those varying cut-points as well as the diverse
datasets result in different prior probabilities. For instance,
in our dataset approximately one third of all methods were
labeled as bug-prone; Moser et al. report on prior proba-

bilities of 23%–32% with respect to bug-prone files; in [27]
0.4%–49% of all modules contain bugs; and in [48] 50% of
all Java packages are bug free. Given this (and the fact
that prior probabilities are not consistently reported in liter-
ature), the use of precision and recall as classification perfor-
mance measures across different studies is difficult. Follow-
ing the advice proposed in [26, 27] we use the area under the
receiver operating characteristic curve (AUC) to asses and
discuss the performance of our prediction models. AUC is a
robust measure since it is independent of prior probabilities
[4]. Moreover, AUC has a clear statistical interpretation [26]:
When selecting randomly a bug-prone and a not bug-prone
method, AUC represents the probability that a given classi-
fier assigns a higher rank to the bug-prone method. We also
report on precision (P) and recall (R) in our experiments to
allow for comparison with existing work.

In [26], Lessmann et al. compared the performance of
several classification algorithms. They found out that more
advanced algorithms, such as Random Forest and Support
Vector Machine, perform better. However, the performance
differences should not be overestimated, i.e., they are not
significant. We observed similar findings in a previous study
using fine-grained source code changes to build prediction
models on file-level [16]. Menzies et al. successfully used
Bayesian classifiers for bug prediction [27]. To contribute
to that discussion (on method-level) we chose four differ-
ent classifiers: Random Forest (RndFor), Bayesian Network
(BN), Support Vector Machine (SVM), and the J48 decision
tree. The Rapidminer Toolkit [29] was used for running all
classification experiments.

We built three different models for each classifier: The
first model uses change metrics (CM, see Table 3) as predic-
tors, the second uses source code metrics (SCM, see Table 2),
and the third uses both metric sets (CM&SCM) as predic-
tor variables. All our prediction models were trained and
validated using 10-fold cross validation (based on stratified
sampling ensuring that the class distribution in the subsets
is the same as in the whole dataset).

3.2 Prediction Results
Table 4 lists the median (over the 10 folds) classification

results over all projects per classifier and per model. The
cells are interpreted as follows: Bold values are significantly
different from all other values of the same performance mea-
sure in the same row (i.e., classifier). Grey shaded cells
are significantly different from the white cells of the same
performance measure in the same row. To test for signifi-
cance among the different metric sets we applied a Related
Samples Friedman Test (α = 0.05) for each performance
measure (including α−adjustment for the pair-wise post-hoc
comparison). These tests were repeated for each classifier.
For instance, in case of SVM, the median recall value (R) of
the combined model (CM&SCM), i.e., 0.96, is significantly
higher than the median recall values of the change (0.86)
and the source code metric model (0.63). With respect to
AUC and precision (P), this combined model performed sig-
nificantly better than the code metric model (AUC: 0.95 vs.
0.7; P: 0.8 vs. 0.48) model but not significantly better than
the change metric model.

From the performance values one can see two main pat-
terns: First, the model based on source code metrics per-
forms significantly lower over all prediction runs compared
to the change metrics and the combined model. The AUC

Table 4: Median classification results over all pro-
jects per classifier and per model

CM SCM CM&SCM

AUC P R AUC P R AUC P R

RndFor .95 .84 .88 .72 .5 .64 .95 .85 .95

SVM .96 .83 .86 .7 .48 .63 .95 .8 .96

BN .96 .82 .86 .73 .46 .73 .96 .81 .96

J48 .95 .84 .82 .69 .56 .58 .91 .83 .89

values of the code metrics model are approximately 0.7 for
each classifier—what is defined by Lessman et al. as ”promis-
ing” [26]. However, the source code metrics suffer from con-
siderably low precision values. The highest median precision
value for the code metrics model is obtained in case of J48
(0.56). For the remaining classifiers the values are around 0.5.
In other words, using the code metrics half of the methods
are correctly classified (the other half being false positives).
Moreover, code metrics only achieve moderate median recall
values close to 0.6 (except for NB), i.e., only two third of all
bug-prone methods are retrieved.
Second, the change metrics and the combined model per-

form almost equally. Moreover, both exhibit good values in
case of all three performance measures (refers to RQ1 intro-
duced in Section 1). Only the median recall values obtained
by SVM and BN for the combined model are significantly
higher than the ones of the change metrics model (0.96 vs.
0.86 in both cases). Moreover, while AUC and precision are
fairly similar for these two models, recall seems to benefit the
most from using both metric sets in combination compared
to change metrics only.
Summarizing, we can say that change metrics significantly

outperform code metrics when discriminating between bug-
prone and not bug-prone methods (refers to RQ2). A look
at the J48 tree models of the combined metrics set supports
this fact as the code metrics are added towards the leaves of
the tree, whereas except for three projects (˜14%) authors
is selected as root attribute. methodHistories is for 11 pro-
jects (˜52%) the second attribute and in one case the root.
Furthermore, considering the average prior probabilities in
the dataset (i.e., ˜32% of all methods are bug-prone), change
metrics perform significantly better than chance. Hence, the
results of our study confirms existing observations that his-
torical change measures are good bug predictors, e.g., [17,
30, 20, 24]. When using a combined model we might ex-
pect slightly better recall values. However, from a strict
statistical point of view it is not necessary to collect code
measures in addition to change metrics when predicting bug-
prone methods.
Regarding the four classifiers, our results are mostly con-

sistent. In particular, the performance differences between
the classifiers when based on the change and the combined
model are negligible. The largest variance in performance
among the classifiers resulted from using the code metrics
for model building. However, in this case these results are
not conclusive: On the one hand, BN achieved significantly
lower precision (median of 0.46) than the other classifiers.
On the other hand, BN showed a significantly higher recall
value (median of 0.73).

3.3 Prediction with Different Labeling Points
So far we used the absence and presence of bugs to label a

method as not bug-prone or bug-prone, respectively. Approx-
imately one third of all methods are labeled as bug-prone in
our dataset (see Section 3.1). Given this number a developer
would need to spend a significant amount of her time for cor-
rective maintenance activities when investigating all meth-
ods being predicted as bug-prone. We analyze in this section,
how the classification performance varies (RQ3) as the num-
ber of samples in the target class shrinks, and whether we
observe similar findings as in Section 3.2 regarding the re-
sults of the change and code metrics (RQ2). For that, we
applied three additional cut-point values as follows:

bugClass =

{

not bug − prone : #bugs <= p
bug − prone : #bugs > p

(2)

where p represents either the value of the 75%, 90%, or 95%
percentile of the distribution of the number of bugs in meth-
ods per project. For example, using the 95% percentile as
cut-point for prior binning would mean to predict the ”top-
five percent” methods in terms of the number of bugs.

To conduct this study we applied the same experimental
setup as in Section 3.1, except for the differently chosen cut-
points. We limited the set of machine learning algorithms to
one algorithm as we could not observe any major difference
in the previous experiment among them (see Table 4). We
chose Random Forest (RndFor) for this experiment since its
performance lied approximately in the middle of all classi-
fiers.

Table 5 shows the median classification results over all
projects based on the RndFor classifier per cut-point and
per metric set model. The cell coloring has the same inter-
pretation as in Table 4: Grey shaded cells are significantly
different from the white cells of the same performance mea-
sure in the same row (i.e., percentile). For better readability
and comparability, the first row of Table 5 (denoted by GT0,
i.e., greater than 0, see Equation 1) corresponds to the first
row of Table 4 (i.e., performance vector of RndFor).

We can see that the relative performances between the
metric sets behave similarly to what was observed in Sec-
tion 3.2. The change (CM) and the combined (CM&SCM)
models outperform the source code metrics (SCM) model sig-
nificantly across all thresholds and performance measures.
The combined model, however, does not achieve a signifi-
cantly different performance compared to the change model.
While the results in Section 3.2 showed an increase regard-
ing recall in favor of the combined model, one can notice
an improved precision by 0.06 in case of the 90% and the
95% percentile between the change and combined model—
although not statistically significant. In case of the 75% per-
centile the change and the combined model achieve nearly
equal classification performance.

Comparing the classification results across the four cut-
points we can see that the AUC values remain fairly constant
on a high level for the change metrics and the combined
model. Hence, the choice of a different binning cut-point
does not affect the AUC values for these models. In contrast,
a greater variance of the AUC values is obtained in the case
of the classification models based on the code metric set.
For instance, the median AUC value when using GT0 for
binning (0.72) is significantly lower than the median AUC
values of all other percentiles.

Generally, precision decreases as the number of samples
in the target class becomes smaller (i.e., the higher the per-
centile). For instance, the code model exhibits low preci-

Table 5: Median classification results for RndFor
over all projects per cut-point and per model

CM SCM CM&SCM

AUC P R AUC P R AUC P R

GT0 .95 .84 .88 .72 .50 .64 .95 .85 .95

75% .97 .72 .95 .75 .39 .63 .97 .74 .95

90% .97 .58 .94 .77 .20 .69 .98 .64 .94

95% .97 .62 .92 .79 .13 .72 .98 .68 .92

sion in the case of the 95% percentile (median precision of
0.13). Looking at the change metrics and the combined
model the median precision is significantly higher for the
GT0 and the 75% percentiles compared to the 90% and the
95% percentiles. Moreover, the median precision of those
two percentiles, e.g., 0.64 and 0.68 in case of the combined
model, might appear to be low. However, since only 10%
and 5% of all methods are labeled as bug-prone, this is bet-
ter than chance.
The picture regarding recall is not conclusive. On the one

hand, there are improved median recall values for higher
percentiles in case of the code metrics model. For instance,
the median recall of the 95% percentile is significantly higher
than the one of GT0 (0.72 vs. 0.64). On the other hand,
recall slightly deteriorates for the other two models as higher
cut-points for prior binning are chosen. However, one must
keep in mind—as stated in Section 3.1—that using precision
and recall for the comparison of classification models that
were obtained under different prior probabilities (i.e., in our
case the different percentiles) might not be appropriate.
In short, we can say that (even) when the number of sam-

ples in the target class diminishes, collecting code metrics
in addition to change metrics for building prediction mod-
els does not yield better results. Furthermore, the choice of
a different cut-point for prior binning does not affect AUC
and recall. However, we likely obtain lower precision values.

3.4 Summary of Results
Based on the experiments in this section we can answer

our research questions posed in Section 1.

RQ1: It is possible to build method level bug prediction
models achieving a precision of 0.85, a recall of 0.95,
and an AUC of 0.95.

Our experiments on 21 different software systems indicate
that—using Random Forest—one can build a bug prediction
model at the method level which achieves 0.85 precision, 0.95
recall, and 0.95 AUC. Employing different machine learning
methods does not significantly impact the performance of
the classification, which does not fall below 0.8 for precision,
0.89 for recall, and 0.91 for AUC. This result is similar to
the findings of our earlier work performed at the file level
[16]. Moreover, in an extensive experiment using 17 differ-
ent classification algorithms no significant performance dif-
ferences could be detected [26]. Hence, instead of using only
classification performance as criteria, one might choose an
algorithm resulting in a simple model consisting of a (few)
readable rules, such as decision trees.

RQ2: While change metrics (CM) are a stronger in-
dicator of bug-prone methods than source code metrics
(SCM), combining CM and SCM does not improve the
performance significantly.

CM achieved significantly better prediction results with
respect to AUC, precision, and recall (see Table 4). For in-
stance, a Random Forest model using CM as input variables
obtained a significantly higher median AUC value compared
to the same model using SCM as predictor (0.95 vs. 0.72).
This confirms prior work: Change metrics outperform mea-
sures that are computed from the source code [17, 24, 30].

While both—the CM based and the combined models—
obtain significantly better results than the SCM based model,
they are not significantly different among each other. We
observed only a slight increase regarding recall when using
both metric sets.

RQ3: Choosing a higher percentile for labeling does not
affect AUC values.

In addition to the commonly applied criteria ”at least one
bug” (see Equation 1) we used the 75%, 90%, and 95% per-
centiles (see Equation 2) of the number of bugs per methods
as cut-point for a priori labeling. We obtained fairly high
and consistent AUC values across all four percentiles in case
of the CM and the combined models (see Table 5). Hence,
we conclude that our models are robust with respect to differ-
ent prior probabilities. Similar observations were made for
recall. Not surprisingly, as the number of samples in the tar-
get class becomes smaller, i.e., as higher percentiles are cho-
sen as cut-points, precision tends to decrease. Consequently,
when comparing prediction models that were trained with
different target class distributions one should use AUC as
performance measure as it is independent of prior probabil-
ities [4].

4. APPLICATION OF RESULTS
The results of our study showed that we can build bug

prediction models at the method level with good classifica-
tion performance by leveraging the change information pro-
vided by fine-grained source code changes. In the following
we demonstrate the application and benefit of our predic-
tion model to identify the bug-prone methods in a source
file compared to a file-level prediction model that performs
equally well. For that, we assume a scenario as follows:

A software developer of the JDT Core plugin, the largest
Eclipse project, and the Derby Engine module, the largest
non-Eclipse project in our dataset, receives the task to im-
prove the unit testing in their software application in or-
der to prevent future post-release bugs. For this, she needs
to know the most bug-prone methods because they should
be tested first and more rigorously than the other methods.
For illustration purpose, we assume the developer has little
knowledge about her project (e.g., she is new to the project).
To identify the bug-prone methods, she uses two prediction
models, one model to predict the bug-prone source files and
our Random Forest (RndFor) model to directly predict the
bug-prone methods of a given source file.

Furthermore, we take as examples release 3.0 of the JDT
Core plugin and release 10.2.2.0 of the Derby Engine mod-
ule. For both releases, she uses the two prediction models

trained on the source code metrics and the versioning sys-
tem history back to the last major release (i.e., 2.1 in case of
JDT Core and 10.2.1.6 in case of Derby) for calculating the
change metrics. Furthermore, both the models were trained
using 1 bug as binning cut-point (see Equation 1) and 10-
fold cross validation and then reapplied to the dataset. To
better quantify the advantage of our method-level prediction
model over the file-level prediction model, we assume that
the file-level prediction model performs equally well in terms
of AUC, precision, and recall.

Comparison.
We first discuss two exemplary methods of JDT Core 3.0

in the context of the above outlined scenario and then ac-
cordingly two methods of the Derby Engine 10.2.2.0 dataset.
We selected these methods because they were ranked and
classified as highly bug-prone by the RndFor model. Further-
more, they showed a large change history in their datasets.
JDT Core 3.0. On average, 12% of all methods were bug-
prone, and a class contained, on average, 13 methods in this
release of Eclipse. The RndFor model resulted in an AUC
of 0.9, precision of 0.82, and recall of 0.93.
In particular, the parent class of the method Main.con-

figure(..)2 had 26 methods in the release revision 1.151
out of which 11 (˜42%) were affected by post-release bugs.
Our model classified this particular method as bug-prone
with a probability of 1.0. In fact, (among others) bug 743553

was reported and fixed (rev. 1.162 with 3.1 M2 as target
milestone) by changing two conditional expressions. After
being guided to the class of this method by her file-level
prediction model our developer would have a chance of 42%
to guess one of the bug-prone methods in the first step. If
not successful, her chances increase to 44% (=11/25) in the
next step, in the third step to ˜46% (11/24) and so on. On
the other hand, given the precision of 0.82 achieved by our
model4, she arrives approximately at the same probability
of selecting one of the bug-prone methods simply by chance
after having ruled out 12 methods (i.e., 11/(26− 12) = 0.79
vs. precision of 0.82). Therefore, our model could save up
to 12 manual inspection steps.
LocalDeclaration.resolve(..)5 was the only method

out of six (as per revision 1.29) that contained a bug. This
method was again confidently classified as bug-prone by our
model with a probability of 0.97. In particular, bug 68998

was reported only a few days after the release and fixed in re-
vision 1.31 for release 3.1. Similarly to the first example, our
model correctly identified the affected method and, hence,
could prevent a maximum of 5 manual method inspections.
Derby Engine 10.2.2.0. The RndFor model created for
this release obtained an AUC of 0.9, precision of 0.53, and
recall of 0.7. This is a lower performance compared to the
model of JDT Core. However, given the fact that only 12%
of the methods were bug-prone and a class had on average
13 methods, this is better than chance, i.e., predicting bugs
at the file level.
The class CreateIndexConstantAction6 had 6 methods

as per release revision 429838. executeConstantAction(Ac-

2
org.eclipse.jdt.internal.compiler.batch.Main.configure(String[])

3
https://bugs.eclipse.org/bugs/show_bug.cgi?id=<bug_number>

4
Precision can be seen as the probability that a randomly chosen method is

relevant, i.e., contains a bug.
5
org.eclipse.jdt.internal.compiler.ast.LocalDeclaration.resolve(BlockScope)

6
org.apache.derby.impl.sql.execute.CreateIndexConstantAction

tivation) was the only method being bug-prone. Our model
correctly classified it with a probability of 0.9. Therefore,
more than half of all methods need to be manually ”elimi-
nated” until guessing becomes as effective as our model re-
garding the identification of this particular bug-prone method
(i.e., 1/(6 − 4) = 0.5 vs. precision of 0.53). An analysis of
the revisions showed that, for example, bug 25997 was fixed
in revision 528033 for the upcoming release 10.3.1.4.

When class TernaryOperatorNode8 was tagged for the re-
lease 10.2.2.0 with revision 480219, it contained 30 methods.
After this release 6 methods (i.e., 20%) were affected by bugs.
One of those methods was locateBind(), e.g., bug 2777 was
fixed in revision 553735. Again, it was correctly classified as
bug-prone with a high probability of 0.99. When compar-
ing the prior probability of 20% to the precision of 0.53 our
model denotes a major improvement and could save roughly
up to 18 manual inspection steps (i.e., 6/(30− 18) = 0.5).

Although these examples show a clear usefulness of our
approach, there are some limitations to this scenario as it
is illustrated above. For instance, in a corresponding real-
life scenario a senior developer is not completely unaware of
which particular methods contain most of the bugs. Hence,
she will not have to rely on pure guessing when examin-
ing the potential candidate methods. Moreover, some meth-
ods, e.g., accessor-methods, can be examined rather quickly.
However, the scenario clearly shows the benefit of favoring
our method-level prediction model over file-level prediction
models. Moreover, we are convinced that due to the good
performance of our models even senior software developers
can benefit from them: Our models help to narrow down the
search space for identifying the bug-prone methods. We plan
to investigate these benefits with controlled experiments.

Regarding the practicability of our approach, the overhead
of the more complex AST-based structural differencing com-
pared to text differencing, e.g., code churn, is negligible. For
instance, the extraction process for the entire Eclipse Com-
pare history takes 5min if the source code revisions are lo-
cally available. Currently, the time-critical factor is fetching
all source code revisions from a remote repository. Hence,
integrating our prediction models into a continuous integra-
tion environment, e.g., via svn hook, is part of the future
work and would even speed up our approach since the fine-
grained source code changes could be calculated locally, e.g.,
for each commit or during nightly builds.

5. THREATS TO VALIDITY
The Construct Validity of our work, i.e., how accurate we

measure a particular concept, is mainly threatened by three
facts: First, we establish the link between the change history
of a project and bugs by searching for references to bug
reports in commit messages. This method is only as reliable
as such references are (manually) recorded when committing.
In particular, bug reports that are not referenced in commit
messages cannot be linked to any revision of the version
control system. Therefore, this set of successfully linked
bugs might not be a fair representation of all bugs [5]. We
have reduced this threat by taking into account the bug
fixing and commit policy as described in the documentation
of a particular project. In Lucene, for instance, standard

7
https://issues.apache.org/jira/browse/DERBY-<bug_number>

8
org.apache.derby.impl.sql.compile.TernaryOperatorNode

commit patterns are used for bug fixes (e.g. ’lucene-512’),
which facilitates the bug-linking.

In addition, this threatens the usefulness of our approach—
if bugs cannot be linked we will not be able to train any
model. However, analyzing commit messages to establish
the link between change history and bug reports is a com-
mon procedure and does also reflect state of the art [43, 9].
Moreover, prior studies found out that bug prediction mod-
els are to some extent resistant to such kind of noise [22].
Recently, research proposed a technique to re-establish links
even if they are missing in the commit messages [45].
Second, ChangeDistiller extracts fine-grained source

code changes by comparing subsequent file revisions. Hence,
varying commit behavior can influence how we measure code
changes and link bugs. For instance, a developer might com-
mit further changes in addition to a bug fix. In this case
we would consider all methods that were changed to be af-
fected by that bug. We mitigated this threat by considering
a large number of projects in our experiments. Moreover,
in our dataset on average a single method was changed per
each revision with a reference to a bug report in its commit
message—indicating that bug fixes are regularly committed
in isolation. This observation is confirmed by prior studies
that in most cases only small changes in a file are committed
[39]. Moreover, in Eclipse a substantial amount of bugs are
indeed fixed in one method [13].
Third, we took all references into account when counting

the number of bugs. Therefore, it is possible that not all of
these references represent bugs in their sense of meaning [1],
i.e., problems related to corrective maintenance. However,
an inspection of bug references referring to JDT Core showed
that most of those references are indeed real bugs [9].
The generalizability of our study, i.e., its External Valid-

ity, is threatened by the dataset we use for this study. For
instance, many of the systems belong to the Eclipse ecosys-
tem. Similarly, Derby, Lucene, Ant, Jena, and Xerces are all
projects of the Apache Foundation. Therefore, it is possible
that our work suffers from the bias opposed by character-
istics of the development process unique to these communi-
ties. We selected these systems because they are relatively
large, actively developed, and were extensively studied be-
fore [48, 16, 9, 21, 20, 41], allowing us to contribute to an
existing body of knowledge. In particular, Eclipse emerged
to a ”de facto standard” case study when analyzing open-
source systems. Nevertheless, all projects are independently
developed, come from different domains, and emerged from
the context of unrelated communities. Moreover, although
open source, Eclipse and (to some extent) Jena have an in-
dustrial background.
In addition, all tools used in this paper are publicly avail-

able, and Ghezzi and Gall offer our data collecting processes
as web services [15] facilitating the extension of our work
with data from other projects.

We modeled the relation between the two metric sets (see
Table 2 and 3) and bugs in methods using different ma-
chine learning algorithms. The quality of our models were
discussed by means of their classification performance and
statistical significance testing. However, previous literature
proposed further metrics, such as past bugs [48, 23], the age
of files [30], or developer interaction measures [37, 33], as
well as different approaches to measure those metrics, e.g.,
entropy based [19], relative [31], or burst based [34]. As part
of our future work we plan to conduct a comparative study

with an extended space of metrics including additional at-
tribute selection and data mining techniques.

6. RELATED WORK
We discuss related work according to the type of metrics

that were used to train the prediction models.
Change Metrics. The idea of change metrics (often re-
ferred to as code churn) is that bugs are introduced by
changes [9]. Thus, the more changes are done to a partic-
ular part of the source code the more likely it will contain
bugs. In [17], Generalized Linear Models were built based
on several change metrics, e.g., number of changes or aver-
age age of the code. A study showed that relative change
metrics from the Windows Server change history are bet-
ter indicators for defect density than absolute values [31].
The fault and change history in combination with a (nega-
tive binomial) regression model achieved good performance
in predicting not only the location, but also the number
of bugs [36]. Furthermore, the more complex source code
changes are (as measured by entropy), the more likely they
are bug-prone [19]. Nagappan et al. found that the number
of subsequent, consecutive changes (rather than the total
number of changes) is a strong predictor for bugs [34]. Bern-
stein et al. studied the extent to which measuring changes
in different timeframes affects prediction performance [4].
In a prior study using the change history of Eclipse, we
compared lines based code churn and fine-grained source
code changes for bug prediction [16]. The latter metrics
resulted in significantly better prediction performance. Shi-
hab et al. predicted surprise defects in files that are rarely
affected by changes [42]. An adaptive cache-like approach
using fine-grained changes and past-defects to predict bugs
at the entity-level (function, method) was proposed in [23].
The main difference to our work is that their approach sug-
gests further source code entities that need to be changed
while a particular bug is being fixed, rather than predicting
bug-prone methods in advance.

A study on changes in general showed that a substantial
amount of changes are non-esseantial changes, i.e., they are
not directly related to feature modifying changes [21], e.g.,
adding and removing the keyword this.
Code Metrics. Using code metrics for predicting bugs as-
sumes that a more complex piece of code is harder to un-
derstand and to change, and therefore, it is likely to con-
tain more bugs [9]. Basili et al. investigated the impact of
the CK object-oriented metrics suite to software quality [3].
The same metric suite was applied on a commercial system
in [44]. A set of complexity and size metrics was used to
predict post-release bugs in releases of Eclipse [48]. The use-
fulness of (static) code metrics to build prediction models
was demonstrated using the NASA dataset [27]. In [26], an
extensive study was conducted with the same dataset, focus-
ing on evaluating different machine learning algorithms. The
conclusion is that the difference between those algorithms is
mostly not (statistically) significant. However, this ceiling
effect is reported to disappear when focusing not only on
maximizing detection and minimizing false alarm rates [28].

The practicability of lines of code (LOC) to predict de-
fects was demonstrated in [46]. El Emam et al. showed that
the size of a class is a confounding factor when building
bug prediction models [11]. An extensive empirical study
with 38 different metrics and multivariate models to predict
the fault-prone modules of the Apache web-server is pre-

sented in [10]. Social-network measures were applied on the
dependency graph of Windows Server [47] and open-source
systems [19]: More central binaries are more defect-prone.
Social Measures. Work on this subject investigates how
the organizational and social context of the software devel-
opment process affects its quality. Pinzger et al. related
social-network techniques to the developer contribution net-
work [37]. They found that if more developers contribute
to a certain binary it will more likely be affected by post-
release defects. Moreover, removing minor contributors from
such a network affects prediction performance negatively [7].
Recent work showed that investigating code-ownership and
interactions between developers at a fine-grained level can
substantially contribute to defect prediction [40, 25]. Na-
gappan et al. showed that the organizational complexity of
the development process is significantly related to defects
[33]. Somewhat surprisingly, distributed development does
not seem to affect software quality [6].
These metrics are rarely used in isolation but instead are

often combined for building bug prediction models [2, 41].
The goal is to either achieve (significantly) higher predic-
tion results or to study which of the metrics are better pre-
dictors for bugs [9, 33]. Although a general consensus has
not been achieved, several studies showed—similarly to what
we observed in this work—that change metrics potentially
outperform code metrics [30, 20, 24].

7. CONCLUSIONS AND FUTURE WORK
We empirically investigated if bug prediction models at

the method level can be successfully created. We used the
source code and change history of 21 Java open-source (sub-
)systems. Our experiments showed that:

• Change metrics (extracted from the version control sys-
tem of a project) can be used to train prediction mod-
els with good performance. For example, a Random
Forest model achieved an AUC of 0.95, precision of
0.84, and a recall of 0.88 (RQ1).

• Using change metrics as predictor variables produced
prediction models with significantly better results com-
pared to source code metrics. However, including both
metrics sets did not improve the classification perfor-
mance of our models (RQ2).

• Different binning values did not affect the AUC values
of our models (RQ3). Moreover, with a precision of
0.68 our models identify the ”top 5%” of all bug-prone
methods better than chance.

• Conforming prior work, e.g., [26], we could not ob-
serve a significant difference among several machine
learning techniques with respect to their classification
performance.

Given their good performance, our method-level predic-
tion models can save manual inspection steps. Currently,
we use the entire development history available at the time
of data collection to train prediction models. It is part
of our future work to measure changes based on different
timeframes, e.g., release, quarterly, or yearly based. Fur-
thermore, we plan to investigate a broader feature space,
i.e., additional attributes, more advanced attribute selection
techniques (rather than ”feeding all data” to the data min-
ing algorithms), e.g., Information Gain [27], for prediction
model building.

8. REFERENCES
[1] G. Antoniol, K. Ayari, M. D. Penta, F. Khomh, and

Y.-G. Guéhéneuc. Is it a bug or an enhancement? a
text-based approach to classify change requests. In
Proc. Conf. of the center for advanced studies on
collaborative research: meeting of minds, pages
304–318, 2008.

[2] E. Arisholm and L. Briand. Predicting fault-prone
components in a java legacy system. In Proc. Int’l
Symp. on Empir. Softw. Eng., pages 8–17, 2006.

[3] V. Basili, L. Briand, and W. Melo. A validation of
object-oriented design metrics as quality indicators.
IEEE Trans. Softw. Eng., 22:751–761, October 1996.

[4] A. Bernstein, J. Ekanayake, and M. Pinzger.
Improving defect prediction using temporal features
and non linear models. In Proc. Int’l Workshop on
Principles of Softw. Evolution, pages 11–18, 2007.

[5] C. Bird, A. Bachmann, E. Aune, J. Duffy,
A. Bernstein, V. Filkov, and P. Devanbu. Fair and
balanced?: bias in bug-fix datasets. In Proc. Joint Eur.
Softw. Eng. Conf. and Symp. on the Found. of Softw.
Eng., pages 121–130, 2009.

[6] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and
B. Murphy. Does distributed development affect
software quality? an empirical case study of windows
vista. In Proc. Int’l Conf. on Softw. Eng., pages
518–528, 2009.

[7] C. Bird, N. Nagappan, B. Murphy, H. Gall, and
P. Devanbu. Don’t Touch My Code! Examining the
Effects of Ownership on Software Quality. In Proc.
Joint Eur Softw. Eng. Conf. and Symp. on the Found.
of Softw. Eng., pages 4–14, 2011.

[8] S. R. Chidamber and C. F. Kemerer. A metrics suite
for object oriented design. IEEE Trans. Softw. Eng.,
20(6):476–493, June 1994.

[9] M. D’Ambros, M. Lanza, and R. Robbes. Evaluating
defect prediction approaches: a benchmark and an
extensive comparison. Empir. Softw. Eng., pages 1–47,
2011.

[10] G. Denaro and M. Pezzè. An empirical evaluation of
fault-proneness models. In Proc. Int’l Conf. on Softw.
Eng., pages 241–251, 2002.

[11] K. E. Emam, S. Benlarbi, N. Goel, and S. Rai. The
confounding effect of class size on the validity of
object-oriented metrics. IEEE Trans. on Softw. Eng.,
27(7):630–650, July 2001.

[12] B. Fluri, M. Würsch, M. Pinzger, and H. C. Gall.
Change Distilling: Tree Differencing for Fine-Grained
Source Code Change Extraction. IEEE Trans. on
Softw. Eng., 33(11):725–743, November 2007.

[13] B. Fluri, J. Zuberbuehler, and H. C. Gall.
Recommending method invocation context changes. In
Proc. Int’l Workshop on Recomm. Syst. for Softw.
Eng., pages 1–5, 2008.

[14] H. C. Gall, B. Fluri, and M. Pinzger. Change analysis
with evolizer and changedistiller. IEEE Software,
26(1):26–33, January/February 2009.

[15] G. Ghezzi and H. Gall. Sofas: A lightweight
architecture for software analysis as a service. In Proc.
Working Conf. on Softw. Architecture, pages 93–102,
2011.

[16] E. Giger, M. Pinzger, and H. C. Gall. Comparing

fine-grained source code changes and code churn for
bug prediction. In Proc. Int’l Workshop on Mining
Softw. Repos., pages 83–92, 2011.

[17] T. Graves, A. Karr, J. Marron, and H. Siy. Predicting
fault incidence using software change history. IEEE
Trans. Softw. Eng., 26:653–661, July 2000.

[18] T. Gyimothy, R. Ferenc, and I. Siket. Empirical
validation of object-oriented metrics on open source
software for fault prediction. IEEE Trans. Softw. Eng.,
31:897–910, 2005.

[19] A. Hassan. Predicting faults using the complexity of
code changes. In Proc. Int’l Conf. on Softw. Eng.,
pages 78–88, 2009.

[20] Y. Kamei, S. Matsumoto, A. Monden, K. Matsumoto,
B. Adams, and A. Hassan. Revisiting common bug
prediction findings using effort-aware models. In Proc.
Int’l Conf. on Softw. Maint., pages 1–10, 2010.

[21] D. Kawrykow and M. P. Robillard. Non-essential
changes in version histories. In Proc. Int’l Conf. on
Softw. Eng., pages 351–360, 2011.

[22] S. Kim, H. Zhang, R. Wu, and L. Gong. Dealing with
noise in defect prediction. In Proc. Int’l Conf. on
Softw. Eng., pages 481–490, 2011.

[23] S. Kim, T. Zimmermann, J. Whitehead, and A. Zeller.
Predicting faults from cached history. In Proc. Int’l
Conf. on Softw. Eng., pages 489–498, 2007.

[24] P. Knab, M. Pinzger, and A. Bernstein. Predicting
defect densities in source code files with decision tree
learners. In Proc. Int’l Workshop on Mining Softw.
Repos., pages 119–125, 2006.

[25] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In. Micro
interaction metrics for defect prediction. In Proc.
Joint Eur. Softw. Eng. Conf. and Symp. on the Found.
of Softw. Eng., pages 311–321, 2011.

[26] S. Lessmann, B. Baesens, C. M. Swantje, and Pietsch.
Benchmarking classification models for software defect
prediction: A proposed framework and novel findings.
IEEE Trans. on Softw. Eng., 34:485–496, July 2008.

[27] T. Menzies, J. Greenwald, and A. Frank. Data mining
static code attributes to learn defect predictors. IEEE
Trans. on Softw. Eng., 33:2–13, January 2007.

[28] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang,
and A. Bener. Defect prediction from static code
features: current results, limitations, new approaches.
Automated Softw. Eng., 17(4):375–407, 2010.

[29] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and
T. Euler. Yale: Rapid prototyping for complex data
mining tasks. In Proc. Int’l Conf. on Knowl.
Discovery and Data Mining, pages 935–940, 2006.

[30] R. Moser, W. Pedrycz, and G. Succi. A comparative
analysis of the efficiency of change metrics and static
code attributes for defect prediction. In Proc. Int’l
Conf. on Softw. Eng., pages 181–190, 2008.

[31] N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. In Proc.
Int’l Conf. on Softw. Eng., pages 284–292, 2005.

[32] N. Nagappan, T. Ball, and A. Zeller. Mining metrics
to predict component failures. In Proc. Int’l Conf. on
Softw. Eng., pages 452–461, 2006.

[33] N. Nagappan, B. Murphy, and V. Basili. The influence
of organizational structure on software quality: an

empirical case study. In Proc. Int’l Conf. on Softw.
Eng., pages 521–530, 2008.

[34] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig,
and B. Murphy. Change bursts as defect predictors. In
Proc. Int’l Symp. on Softw. Reliability Eng., 2010.

[35] T. Nguyen, B. Adams, and A. Hassan. Studying the
impact of dependency network measures on software
quality. In Int’l Conf. on Softw. Maint., pages 1 –10,
2010.

[36] T. Ostrand, E. Weyuker, and R. Bell. Predicting the
location and number of faults in large software
systems. IEEE Trans. Softw. Eng., 31(4):340–355,
2005.

[37] M. Pinzger, N. Nagappan, and B. Murphy. Can
developer-module networks predict failures? In Proc.
Symp. on the Found. of Softw. Eng., pages 2–12, 2008.

[38] D. Posnett, V. Filkov, and P. Devanbu. Ecological
inference in empirical software engineering. In Proc.
Int’l Conf. on Automated Softw. Eng., pages 362–371,
2011.

[39] R. Purushothaman and D. Perry. Toward
understanding the rhetoric of small source code
changes. IEEE Trans. Softw. Eng., 31(6):511–526,
June 2005.

[40] F. Rahman and P. Devanbu. Ownership, experience
and defects: a fine-grained study of authorship. In
Proc. Int’l Conf. on Softw. Eng., pages 491–500, 2011.

[41] E. Shihab, M. Jiang, W. Ibrahim, B. Adams, and
A. Hassan. Understanding the impact of code and
process metrics on post-release defects: a case study
on the eclipse project. In Proc. Int’l Symp. on Empir.
Softw. Eng. and Meas., pages 1–10, 2010.

[42] E. Shihab, A. Mockus, Y. Kamei, B. Adams, and
A. Hassan. High-impact defects: a study of breakage
and surprise defects. In Proc. Joint Eur. Softw. Eng.
Conf. and Symp. on the Found. of Softw. Eng., pages
300–310, 2011.

[43] J. Śliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? In Proc. Int’l Workshop on
Mining Softw. Repos., pages 1–5, 2005.

[44] R. Subramanyam and M. Krishnan. Empirical analysis
of ck metrics for object-oriented design complexity:
Implications for software defects. IEEE Trans. Softw.
Eng., 29(4):297–310, 2003.

[45] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung. Relink:
Recovering links between bugs and changes. In Proc.
Joint Eur. Softw. Eng. Conf. and Symp. on the Found.
of Softw. Eng., pages 15–25, 2011.

[46] H. Zhang. An investigation of the relationships
between lines of code and defects. In Proc. Int’l Conf.
on Softw. Maint., pages 274–283, 2009.

[47] T. Zimmermann and N. Nagappan. Predicting defects
using network analysis on dependency graphs. In Proc.
Int’l Conf. on Softw. Eng., pages 531–540, 2008.

[48] T. Zimmermann, R. Premraj, and A. Zeller.
Predicting defects for eclipse. In Proc. Int’l Workshop
on Predictor Models in Softw. Eng., pages 9–15, 2007.

