
Evaluating Feature Change Impact

on Multi-product Line Configurations
Using Partial Information
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Abstract. Evolving large-scale, complex and highly variable systems is
known to be a difficult task, where a single change can ripple through
various parts of the system with potentially undesirable effects. In the
case of product lines, and moreover multi-product lines, a change may
affect only certain variants or certain combinations of features, making
the evaluation of change effects more difficult.

In this paper, we present an approach for computing the impact of
a feature change on the existing configurations of a multi-product line,
using partial information regarding constraints between feature models.
Our approach identifies the configurations that can no longer be derived
in each individual feature model taking into account feature change im-
pact propagation across feature models. We demonstrate our approach
using an industrial problem and show that correct results can be ob-
tained even with partial information. We also provide the tool we built
for this purpose.

Keywords: software product line, variability, change impact, feature.

1 Introduction

Evolving large-scale, complex and variable systems is known to be a difficult
task, where a single change can ripple through various parts of the system with
potentially undesirable effects. If the components of this system are themselves
variable, or if the capabilities exposed by an interface depend on some exter-
nal constraint (i.e. configuration option), then engineers need extensive domain
knowledge on configuration options and component implementations to safely
improve their system [8]. In the domain of product line engineering (PLE), an
approach aiming at maximising asset reuse in different products [14], this type
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of evolutionary challenge is the norm. Researchers and practitioners have looked
into what variability modeling - and feature modeling specifically - can bring
to change impact analysis on product lines (PLs). Existing methods can eval-
uate, given a change expressed in features, how a feature model (FM) and the
composition of features it allows (configurations) are impacted [13], [7], [19].
However, FMs grow over time in terms of number of features and constraints
and safe manual updates become unmanageable by humans [4]. Moreover, auto-
mated analysis methods do not scale well when the number of configurations or
feature increases [7].

To mitigate this, nested product lines, product populations, or multi-product
lines (MPL - a set of interdependent PLs) approaches recommend modularizing
FMs into smaller and more manageable pieces [11], [18], [12]. While this solves
part of the problem, known FM analysis methods are designed for single FMs.
A common approach is to recompose the FMs into a single one. To achieve
this, existing approaches suggest describing explicitly dependencies between FMs
using cross-FM constraints, or hierarchies [1] to facilitate model composition and
analysis. Such relationships act as vectors of potential change impact propagation
between FMs. However, in [9] Holl et al. noted that the knowledge of domain
experts about model constraints is likely to be only partial (both intra-FMs or
extra-FMs). For this reason, we cannot assume that such relationships will be
available as inputs to a change impact analysis.

In this context, we present and evaluate an approach to facilitate the assess-
ment of the impact of a feature change on existing configurations of the different
PLs of an MPL using partial information about inter-FMs relationships. After
giving background information regarding feature modelling and product lines
(Section 2), we present the industrial problem that motivated this work and
detail the goals and constraints of this study (Section 3). We then present our
approach to enrich the variability model of an MPL using existing configura-
tions of individual FMs, and the heuristic we apply when analyzing the effect of
a feature change on existing configurations of an MPL (Section 4). In Section 5,
we assess our approach in an industrial context. We present and discuss how we
built the appropriate models, the output of our prototype implementation and
the performance of the approach with its limitations. Finally, Section 6 presents
related work and we elaborate on possible future work in Section 7.

2 Background

In this paper, the definition of feature given by Czarnecki et al. in [5] is used:
“a feature may denote any functional or nonfunctional characteristic at the re-
quirement, architectural, component, platform or any other level”. A feature
model (FM) is a structured set of features with selection rules specifying the al-
lowed combinations of features. This is achieved through relationships (optional,
mandatory, part of an alternative or OR-type structures) and cross-tree con-
straints - arbitrary conditions on feature selection. The most common types of
cross-tree constraints are “excludes” (e.g. “feature A excludes feature B”) and
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Valid configurations:
"Root", "A", "B", "D"
"Root", "B","C" 

Cross-tree constraint(s): 
"A" implies "D"

Cross-tree constraint(s): 
"1" excludes ("3" or "4")

Valid configurations:
"Root_2", "1"
"Root_2", "1","2","5"
"Root_2","2","3"
"Root_2","2","4" 

Feature Model 2Feature Model 1

Valid configurations:
"Root_2", "1", "Root","A","B","D"
"Root_2", "1","2","5","Root","A","B","D"
"Root_2","2","3","Root",B,C
"Root_2","2","4","Root",B,C

inter-FM  constraint(s): 
"1" implies "A"

Cross-tree constraint(s): 
"A" implies "D"

Cross-tree constraint(s): 
"1" excludes ("3" or "4")

Multi-product line view 

Fig. 1. Example of FMs in a SPL and MPL context

“implies” [10]. With a FM, one can derive configurations: a set of features which
does not violate constraints established by the FM. An example of simple FMs
with their valid configurations are depicted on the left hand side of Figure 1.

In the context of a multi-product line, several inter-related FMs are used to
describe the variability of a single large system. This can be achieved by creating
“cross-feature model” constraints or through feature references [3] - where a
given feature appears in multiple FMs. The constraints between FMs can be
combination rules referring to features contained within different models. Those
constraints can also be derived from the hierarchy (or any imposed structure
[15], [3]) of the FMs involved in an MPL. In those cases, the combination rules
can refer to both features and FMs. A product configuration derived from an
MPL is a set of features which does not violate any constraints of individual
FMs nor the cross-FM constraints that have been put in place. An example of
combined FMs with a constraint between two FMs can be seen on the right hand
side of Figure 1.

3 Motivation: Change Impact in an Industrial Context

Our industrial partner builds and maintains high-end medical devices, among
which an x-ray machine. This x-ray machine comes in many variants, each dif-
fering in terms of hardware (e.g. tables, mechanical arms) and software (e.g.
firmware version, imaging system). Certified third party products can be inte-
grated through different types of external interfaces: mechanical (e.g. a module
placed on the operating table), electrical (inbuilt power supply), data related
(image transfer). As an example, three main subsystems of the x-ray machine
(data/video exchange, video chain, and display) and three main interfaces (dis-
play interface, video signal, and data/video exchange) are shown in Figure 2. The
two working modes of a given 3rd party product (“mode 1” and “mode 2”) use
the same interfaces in slightly different ways. In “mode 1”, the 3rd party prod-
uct reuses the x-ray machine display to show images (“shared display”) while in
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Fig. 2. X-ray machine system overview

“mode 2” a dedicated display is used. Sharing an existing display implies using
a signal splitter/merger in the display subsystem. But the splitter/merger also
plays a role in the video processing chain and is only available in certain of its
variants.

Following any update, engineers must validate if the new version of the sys-
tem can still provide what is necessary for 3rd party product integration. This
leads to the following type of questions: “Knowing that 3rd party product X uses
the video interface to export high resolution pictures and import patient data,
is X supported by the new version of the x-ray machine?”. Let us consider the
following scenario: a connection box, present in the video chain and data/video
exchange subsystems, is removed from the list of available hardware. Some spe-
cific configurations of the video chain and of the data/video exchange subsys-
tems can no longer be produced. The data/video exchange interface required
the removed configurations to provide specific capabilities. Following this, it is
no longer possible to export video and import data and the integration with the
3rd party product is compromised.

Currently, engineers validate changes manually by checking specification doc-
uments (either 3rd party products requirements or subsystem technical specifi-
cations) and rigorous testing practices. Despite this, it remains difficult to assess
which subsystem(s) and which of their variant(s) or composition of variants will
be influenced by a given change. Given the rapid evolution of their products, this
error-prone validation is increasingly time consuming. Our partner is exploring
model-driven approaches enabling early detection of such errors.

While this example is focused on the problems that our industrial partner is
facing, enabling analysis for very large PLs and MPLs is a key issue for many
companies. Recently, Schmid introduced the notion of variability-rich eco sys-
tems [17], highlighting the many sources of variability that may influence a
software product. This further emphasizes the need for change impact analysis
approaches on highly variable systems.
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4 Feature-Change Impact Computation

Given the problem described in the previous section, we present here the ap-
proach we designed to assist domain engineers in evaluating the impact of a
change on their products. We first describe the main goal of our approach and
our contributions. Then, we detail the approach and illustrate it with a simple
example. Finally, we consider the scalability aspects of the approach and present
our prototype implementation.

4.1 Goals and Constraints

For our industrial partner, the main aim is to obtain insights on the potential
impacts of an update on external interfaces used by 3rd party products. However,
we have to take into account that domain engineers do not know the details of the
interactions of the major subsystems [9] nor all components included in each one
- only the ones relevant to support external interfaces. As an input, we rely on the
specifications of each major subsystem and their main components in isolation as
well as their existing configurations. Because of the large number of subsystem
variants and interface usages (choices of capabilities or options), we consider
each of them as a product line (PL) in its own right. Features then represent
hardware components, (non-)functional properties, software elements, or any
other relevant characteristic of a subsystem or interface. Using a simple feature
notation and cross-tree constraints [10], we formalize within each subsystem
the known features and constraints between them. By combining those PLs,
we obtain a multi-product line (MPL) representation of the variability of the
system.

With such representation, a change to a subsystem or interface can be ex-
pressed in terms of features: adding or removing features, adding, removing or
modifying intra-FM constraints. Once the change is known, we can apply it to
the relevant FM and evaluate if existing configurations are affected (no longer
valid with respect to the FM). Then, we determine how the change propagates
across the FMs of the MPL using a simple heuristic on configuration composi-
tion. As an ouput, we provide a tree of configuration changes, where nodes are
impacted FMs with their invalid configurations.

Our work brings the following main contributions. We present a novel ap-
proach to compute feature change impact on existing configurations of an MPL.
We provide a prototype tool supporting our approach, available for download.1

We demonstrate the applicability of the approach by applying it to a concrete
case-study executed in cooperation with our industrial partner.

4.2 Approach

We describe here first how the model is built. Then, we show how we enrich
the model with inferred information and finally the steps taken for simulating

1 The tool is available at
http://swerl.tudelft.nl/bin/view/NicolasDintzner/WebHome

http://swerl.tudelft.nl/bin/view/NicolasDintzner/WebHome
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Fig. 3. Approach overview

the effects of a feature change on existing configurations. An overview of the
different steps are shown in Figure 3.

Step 1: Describe subsystem variability. The first step of our approach con-
sists in modelling the various subsystems using FM notation. This operation
is done by domain experts, using existing documentation. When a subsystem
uses a feature that has already been described in another subsystem, we refer-
ence it instead of creating a new one [1]. We associate with each FM its known
configurations.

Step 2: Enrich the model with inferred composition rules. Once all FMs and
configurations have been described, we use the configurations to infer how pairs
of subsystems can be combined. We identify, in FMs sharing features, which
features are shared and then create a list of existing partial configurations con-
taining only them. Partial configurations appearing in existing configurations of
both FMs constitute the whitelist of partial configurations enabling composition
of configurations between the involved FMs. For two given FMs, the number of
feature involved in shared feature constraints is equal to the number of features
shared between them. Those partial configurations are the shared feature con-
straints relating pairs of FMs: two configurations, from two different FMs sharing
features, are “compatible” if they contain exactly the same shared features. In
order to apply such heuristic, shared feature constraints must be generated be-
tween every pairs of FMs sharing features. An example of such constraints is
shown in Figure 4, where FMs 1 and 2 share features E and D.

Step 3: Compute the impact of a feature change. We use the enriched model
to perform feature change impact computation at the request of domain experts.
A feature change can be any modification of a FM (add/remove/move/modify
features and constraints) or a change in available configurations (add/remove).
We assess the impact of the change of the configurations of a modified FM
by re-validating them with respect to the updated FM, as suggested in [7].
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This gives us a first set of invalid configurations that we use as a starting point
for the propagation heuristic.

Step 3.1: Compute impact of configuration changes on shared feature con-
straints. We evaluate how a change of configuration of a FM affects the shared
feature constraints attached to it. If a given shared feature constraint is not
satisfied by at least one configuration of the FM then it is invalidated by the
change. For each FM affected by a configuration change, we apply the reasoning
presented in Algorithm 1. In the case a change does not modify existing configu-
rations, this step will tell us that all existing constraints are still valid, but some
can be added. Otherwise, if all configurations matching a constraint have been
removed then that constraint is considered invalid (i.e. does not match a possible
combination of configurations). Given a list of invalid shared feature constraints
and the FMs to which it refers to, we can execute Step 3.2. If no shared feature
constraints are modified, the computation stops here.

Data: a FM fm with an updated set of configurations
Result: a list of invalidated shared feature constraints lInvalidConstraints

foreach shared feature constraint of fm: sfc do
allowedFeatures ← selected features of sfc;
forbiddenFeatures ← negated features of sfc;
foreach configuration of fm: c (list of feature names) do

if allowedFeatures ⊂ c then
if c ∩ forbiddenFeatures == ∅ then

c is compliant;
end

end

end
if no compliant configuration found then

add sfc to lInvalidConstraints;
end

end

Algorithm 1. Configuration change propagation

Step 3.2: Compute impact of shared feature constraint changes on configura-
tions. Given a set of invalid shared feature constraints obtained in the previous
step, we evaluate how this invalidates other FMs configurations. If a configura-
tion of an FM does not match any of the remaining shared feature constraints,
it can no longer be combined with configurations of other FMs and is considered
invalid. We apply the operations described in Algorithm 2. If any configuration
is invalidated, we use the output of this step to re-apply Step 3.1.

Step 4: Consolidate results. We capture the result of the computation as
a tree of changes. The first level of the tree is always a set of configuration
changes. If more than one FM is touched by the initial change (e.g. removal
of a shared feature) then we have a multi-root tree. Each configuration change
object describes the addition or removal of any number of configurations. If a
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Data: fm: a FM with updated shared feature constraints
Result: lInvalidConfs: a list of invalidated configurations of fm

foreach configuration of fm: c (list of feature names) do
foreach shared feature constraint of fm: sfc do

allowedFeatures ← selected features of sfc;
forbiddenFeatures ← negated features of sfc;
if allowedFeatures ⊂ c then

if c ∩ forbiddenFeatures == ∅ then
c is compliant;

end

end

end
if no compliant constraint found then

add c to lInvalidConfs;
end

end

Algorithm 2. Shared feature constraint change propagation

configuration change triggered a change in shared feature constraints, a shared
feature constraint change is added as its child. A shared feature constraint change
references the two FMs involved and any number of constraints that were added
or removed. The configuration changes following this shared feature constraint
modification are then added as a child “configuration change object”. This struc-
ture allows us to describe the path taken by the impact propagation through the
different FMs.

4.3 Example

Let us consider the example shown in Figure 4, where two FMs share two fea-
tures: D and E. The model is enriched with the “shared feature constraints”
deduced from existing configurations. Those constraints state that, for a con-
figuration of FM1 and FM2 to be combined, both of them need to have shared
features that are either (E,D), (D, not E) and (not E, not D). The resulting data
structure is shown on the left hand side of Figure 4.

We consider the following change: Configuration 1.2 is removed, operation
marked as 1 in Figure 4. We apply the algorithm described in Step 3.1, using
FM1 as a input, and with Configurations 1.1 and 1.3 (all of them except the
removed one) and the associated 3 shared feature constraints. For Constraint
1, the allowed features are “E” and “D”, and there are no forbidden features.
We search for existing configurations of FM1 containing both “E” and “D”
among Configurations 1.1 and 1.3. We find that Configuration 1.3 satisfies this
constraint. The Constraint 2 (allowing “D” and forbidding “E”) is not matched
by any configurations, since the only configuration containing “D” and not “E” is
Configuration 1.2 has been removed. Constraint 3 forbidding features “D” and
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Fig. 4. Change impact propagation example

“E” is satisfied by Configuration 1.1. The resulting list of invalid constraints
contains only one element: Constraint 2 (marked as operation 2 in the diagram).

We then apply 2 presented in Step 3.2 to assess the effect of that change on
the configurations of other FMs (FM2 only in this case). With the remaining
Constraints 1 and 3, we run through the configurations of FM2 to identify which
configurations no longer satisfy any constraints. We find that Configuration 2.1
satisfies Constraint 3 (does not contain “D” nor “E”), and Configuration 2.2
satisfies Constraint 1 (contains both “E” and “D”). However, configuration 2.3
does not satisfy any of the remaining constraints and for this reason, is marked
as invalid (shown as operation 3 on the diagram).

On the right hand side of Figure 4, we present the resulting tree (a branch in
this case). The intial change (removal of configuration 1.2 of FM1) is captured by
the first “configuration change” object. Changes to shared features constraints
are directly attached to this configuration change: the “shared feature config-
uration change” object. Finally, the last node of the tree is the invalidation of
Configuration 2.3 of FM2.

4.4 Scalability Aspects

The initial step of our approach replicates what Heider suggests in [7]: rein-
stantiating existing configurations. Such approaches are known as product-based
approaches [20]. They have known drawbacks: as the number of configurations
and features increases, the solution does not scale. By placing ourselves in an
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MPL environment, we have small to medium size FMs to analyze and perform
this type of operation only on individual FMs.

Our composition heuristic focuses on composition of configurations (as op-
posed to composition of FMs). Once the local product-based approach is used,
we rely on it to identify broken compositions of configurations across the FMs
without having to revalidate any configurations against the FMs. This last step
can be viewed as a family-based analysis of our product line [20], where we val-
idate a property over all members of a PL. We store information relative to
shared feature constraints on the model itself. With this information, applying
the heuristic to an MPL amounts to searching specific character strings in an
array, which is much faster than merging models or validating complete config-
urations.

4.5 Prototype Implementation

We implemented a prototype allowing us to import FMs into a database, enrich
the model and run feature change impact computations. The choice of using a
database was motivated by potential integration with other datasources. Since
FMs are mostly hierarchical structures, we use Neo4j.2 Our Neo4j schema de-
scribes the concepts of feature model, feature, configuration and shared feature
constraint with their relationships as described in the previous section. This
representation is very similar to other FM representations such as [21] with one
exception. The mandatory, optional or alternative nature of a feature is deter-
mined by its relationship with its parent; as opposed to be a characteristic of
the feature itself. This allows to have an optional feature in a FM, referenced by
another FM as part of an alternative.

We leverage the Neo4j Cypher query language to retrieve relevant data: shared
features, configurations containing certain features as well as interconnected fea-
ture models and the features which links them. We use FeatureIDE [21] as a fea-
ture model editor tool. We import models in their xml format into our database
using a custom java application. A basic user interface allows us to give the name
of a feature to remove, run the simulation, and view the result.

5 Industrial Case Study

As mentioned in Section 3, this paper is motivated by an industrial case study
proposed by our partner. The end-goal of this case study is to assess the ap-
plicability of our approach in an industrial context. To do so, we reproduce a
past situation where a change modified the behaviour of some products of their
product line on which a 3rd party product was relying, and where the impact
was detected late in the development process. We present and discuss the main
steps of our approach and their limitations when applied in an industrial context:
the construction of the model, the feature change impact computation with its
result, and the performance of our prototype implementation.

2 http://www.neo4j.org

http://www.neo4j.org
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5.1 Modelling a X-Ray MPL

We start by gathering specification documents of the main subsystems identified
in Section 3, as well as 3rd party product compatibility specifications. With the
domain experts, we identify relevant components and existing configurations of
each subsystem. Using this information, we model the three interfaces and three
subsystems presented in Figure 2 as six distinct feature models (FMs). The three
interfaces are (i) the video/data transfer interface (data and video transfer capa-
bilities), (ii) the video export interface specifying possible resolutions and refresh
rates, and finally (iii) the display interface representing a choice in monitor and
display modes. 3rd party product interface usages are modeled as the configura-
tions associated to those FMs. The three subsystems of the x-ray machine are (i)
the data/video transfer subsystem, (ii) the video chain used to transport images
from a source to a display, and finally (iii) display subsystem. Configurations of
those subsystems are the concrete products available to customers (between 4
and 11 configurations per FM). Each FM contains between 10 and 25 features,
with at most 5 cross-tree constraints. The “data transfer”, “video chain”, and
“screen” FMs share features relating to hardware components, and reuse features
from interface FMs. We use FeatureIDE to create FMs and configurations. We
then import them into a Neo4J database and use our prototype implementation
to generate the necessary shared feature constraints as described in Section 4.

The main challenge of this phase is to ensure that shared features represent
the same concept in all FMs. For instance, a feature “cable” refers to one specific
cable, in a specific context, and must be understood as such in all FMs including
it. Misreferencing features will lead to incorrect shared feature constraints and
incorrect change impact analysis results. We mitigated this effect by carefully
reviewing FMs and shared features with domain expert.

5.2 Simulating the Change

We studied the effect of the removal of a hardware component used to import
video into the system. To simulate this with our prototype, we provide our tool
with the name of the feature to remove (“Connection box 1”). “Connection box
1” is included in both the “data/video transfer” and “video chain” FMs, so its
removal directly impacts those two FMs. The tool re-instantiates all configu-
rations of those two FMs and find that 6 configurations of the “video chain”
FM, and 1 from the “data transfer” FM are invalid. Then, the prototype exe-
cutes the propagation heuristic. A shared feature constraint between the “data
transfer” and “data transfer interface” FMs is no longer satisfied by any con-
figuration of the “data transfer” FM, and is now invalid. Without this shared
feature constraint, one configuration of the “data transfer interface” FM can no
longer be combined with the “data transfer” FM and is considered as invalid.
The removal of a configuration in an interface FM tells us that the compatibility
with one 3rd party product is no longer possible. The modifications of the “data
transfer” FM also invalidated a shared feature constraint existing between the
“data transfer” and “video chain” FMs. However, the change of “shared feature
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Data transfer configuration changes
1 configuration invalidated

Video chain configuration changes
6 configurations invalidated

Feature removal

Data transfer interface configuration 
changes:

1 configurations invalidated 
(3rd party Product X)

Shared feature configuration change
from: data transfer

to: data transfer interface
1 configuration invalidated

Shared feature configuration change
from: data transfer

to: video chain
1 configuration invalidated

Fig. 5. Output of the feature removal simulation

constraint” did not propagate further; the configurations that it should have
impacted had already been invalidated by a previous change.

The result of this impact analysis, reviewed with 3 domain experts, showed
the impact of interfaces that had been problematic in the past. We ran several
other simulations on this model (removal of features, removal of configurations).
On each occasion, the result matched the expectations of domain experts - given
the data included in the model. In this context, the approach proved to be
both simple and successful. This being said, by using information from existing
configurations, we over-constrain inter-FMs relationships. If a shared optional
feature is present in all configurations of a given FM, it will be seen as mandatory
during impact computation. However, if a feature is present in all of existing
configurations, it is mandatory with respect to what is available - as opposed
to mandatory in the variability model. As long as we reason about existing
configurations only, using inferred shared feature constraints should not influence
negatively the result of the simulation.

5.3 Performance Analysis

We provide here a qualitative overview of performance measurements that were
performed during this case study. For our main scenario, our approach checked
all configurations of 2 of the FMs, and the change propagated to 2 others. 2 of the
6 FMs did not have to be analyzed. In this specific context, our implementation
provided results in less than a few seconds, regardless of the scenario that was
ran. We then artificially increased the size of the models (number of features and
number of configurations) to evaluate how it influences the computation time
of the propagation algorithm. Given a set of invalid configurations, we measure
how long it takes to assess the impact on one connected FM. For 2 FMs with
20 features each and 20 configurations each, sharing 2 features, the propagation
from 1 FM to the other and impact its configurations takes approximately 450ms.
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With 200 configurations in each FMs, the same operation takes 1.5s; and up to
2.5s for 300 configurations.

During the industrial case study, the performance of the prototype tool was
sufficient to provide almost real-time feedback to domain engineers. The size
of the models and the number of configurations affect negatively the computa-
tion time of the change impact analysis, because the first step of our approach
is product-based: we do check all configurations of the initially impacted FMs.
However, using an MPL approach, individual FMs are meant, by design, to be
relatively small. Then, computing the propagation of those changes, if any, de-
pends on the number of affected FMs as defined by our propagation heuristic.
The heuristic itself is the validation of a property over all members of the prod-
uct family (“family-based” approach), so its performance is less influenced by
model size [20]. This operation consists in searching for strings in an array, which
should remain manageable even for large models. Our naive implementation, us-
ing Neo4j, already provided satisfactory performance.

5.4 Threats to Validity

With respect to internal validity, the main threat relates to the construction of
the models used for the industrial case study. We built the different FMs and
configurations of the case study using existing documentation while devising the
approach. To avoid any bias in the model construction, we reviewed the models
several times with domain experts, ensuring their representativeness.

Threats to external validity concern the generalisation of our findings. For this
study, we used only the most basic FM notation [10]. Our approach should be
applicable using more complex notations as long as those notation do not change
the representation of the configurations (list of feature names, where each name
appear once). If, for instance, we use a cardinality-based notation, the heuristic
will have to be adapted to take this cardinality into account. The extracted
information from existing configurations was sufficient for this case study, but
more complex relationships between FMs might not have been encountered.
Applying our approach on a different PL would confirm or infirm this.

6 Related Work

The representation of variability in very large systems, using multiple FMs, has
been studied extensively during the past few years. Several composition tech-
niques have been devised. Composition rules can be defined at an FM level,
specifying how the models should be recombined for analysis. Otherwise, cross-
FM constraints can be defined. Examples can be found in the work of Schirmeier
[16] and Acher [1,2]. In our context, we chose not to follow those approaches as
we do not know a priori the over-arching relationships between FMs, nor can we
define cross-FM constraints since we work with partial information. Moreover,
those techniques would then require us to re-compose models before validat-
ing the various configurations which, as noted in [6], is complex to automate.
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Recent work on MPLs showed that there is a need to specialise feature mod-
els to segregate concerns in MPL variability models. Reiser et al. [15] propose
the concept of “context variability model” for multi-product lines, which de-
scribes the variability of the environment in which the end product resides. In
our study, we classified our FMs as either interface or subsystem. This classifi-
cation also allows us to qualify the configurations (as interface usage or product
implementation), which proved to be sufficient for our application. Schröter et
al. present the idea of interface FMs where specific FMs involved in an MPL
act as interfaces between other FMs [18]. They propose a classification of the
characteristics that can be captured by such models (syntactic, behavioral, and
non-functional). While we did not use this approach directly, we noted that for
non-interface FMs, we used specific branches of the model to organize reused
shared features. It is interesting to note that the designs of (non-interface) FMs
share a common structure. We used specific branches of their respective FM to
organise features shared with interface FMs. Doing so, we specialized a branch
of a FM instead of creating dedicated FMs and we do not restrict the type of
features it contains (functional and non-functional alike).

Heider et al. proposed to assess the effect of a change on a variability model
by re-instantiating previously configured products [7], and thus validating non-
regression. Our approach applies similar principles, as we will consider a change
safe as long as the existing products can be re-derived. We apply those concepts
in a multi-product line environment, where change propagation is paramount.
Thüm et al. [19] proposed to classify changes occurring on feature models based
on their effect on existing product configurations. The change is considered as a
“generalisation” if the set of valid products has been extended, “specialisation”
if it has been reduced, “refactoring” if it has not changed, and “arbitrary edit”
in all other cases (when some configurations were removed and others added).
This initial classification gave us some insight into the potential impact of a
change, but only for a single FM. Their methodology could be applied during
the initial step of our approach to identify changes that do not affect existing
configurations, avoiding extra computation later on.

7 Conclusion

Understanding the full extent of the impact of a change on a complex and highly
variable product is a difficult task. The main goal of this research is to facili-
tate the evolution of such systems by assisting domain experts in assessing the
effects of changes on multi-product line variability models. In this paper, we
presented an approach to compute the impact of a feature change on a multi-
product line for non-regression purposes, leveraging information contained in
existing product configurations to infer feature model composition constraints.
We described how our modelling approach can be used in a practical context,
using an industrial case and provide a qualitative review of the performance of
our prototype tool. With partial information, we were able to accurately identify
which configurations of an MPL were rendered invalid by a feature change.
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As industrial products grow more complex and become more variable, manag-
ing their evolution becomes increasingly difficult. Approaches supporting domain
experts’ activities will have to be adapted to meet new challenges. As a step in
that direction, we released our implementation as an open source project3 as
well as the dataset we used for the performance evaluation. We then plan to in-
tegrate it into existing feature modelling tools. We intend to explore how we can
make the best use of the promising graph database technologies such as Neo4J
for feature model checking. With such technology, we will be in a position to
consider more complex models, with potentially more complex FM composition
constraints, further facilitating the design, analysis and maintenance of highly
variable systems.
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